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Entropy-induced microphase separation in hard diblock copolymers
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Whereas entropy can induce phase behavior that is as rich as seen in energetic systems, microphase sepa-
ration remains a very rare phenomenon in entropic systems. In this paper, we present a density functional
approach to study the possibility of entropy-driven microphase separation in diblock copolymers. Our model
system consists of copolymers composed of freely jointed slender hard rods. The two types of monomeric
segments have comparable lengths, but a significantly different diameter, the latter difference providing the
driving force for the phase separation. At the same time this system can also exhibit liquid crystalline phases.
We treat this system in the appropriate generalization of the Onsager approximation to chain-like particles.
Using a linear stabilitybifurcation) analysis, we analytically determine the onset of the microseparated and the
nematic phases for long chains. We find that for very long chains the microseparated phase always pre-empts
the nematic. In the limit of infinitely long chains, the correlations within the chain become Gaussian and the
approach becomes exact. This allows us to define a Gaussian limit in which the theory strongly simplifies and
the competition between microphase separation and liquid crystal formation can be studied essentially analyti-
cally. Our main results are phase diagrams as a function of the remaining model parameters: i.e., the diameter
ratio, the length ratio, and the number ratio of the two types of segments. We also determine the amplitude of
the inhomogeneous order as a function of position along the chain at the onset of the microphase separation
instability. Finally, we give suggestions as to how this type of entropy-induced microphase separation could be
observed experimentally.
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[. INTRODUCTION rophase separatior{6,7]. All three of the cases above are
) . ] examples of thermotropic systems, i.e., systems in which the
Microphase separatio(MPS) is the phenomenon where phase behavior is governed by temperature as a controlling
an initially homogeneous phase develops an inhomogeneowgriable, reflecting the dominance of energetic effects.
spatial structure on a microscopic scale. Usually such sys- Recently, MPS was observed in an entirely new class of
tems consist in part of thermodynamically incompatiblesystems. Binary mixtures of bacteriophage viruses and
components that left by themselves would tendrtacro-  (small) latex spheres with varying size ratios showed a sur-
scopically phase separate. However, due to additional conprisingly rich phase behavior, including a lamellar phg&e
straints of a physical or chemical nature the spatial separdn this phase, the lamellae are defined by a “smectic” ar-
tion between the components is prevented from increasinggngement of the rodlike virus particles with the spherical
beyond a microscopic length scale. This leads to phases #atex particles in between the layeig9]. These results are
which the components can demix on|y |oca||y_ There are gemarkable for two reasons. First, _unlike_ the pl’IEViO_US arche-
few archetypical examples of systems showing M@Stwo  typal cases of MPS, we are dealing with a binamyture
(usually flexible polymers species that have an unfavorable}{Vh'Cf}, phase separates on a microscopic scale. There is no
mutual interaction energy which are joined together by ahard” constraint like a chemical bon@r a surfactant spe-
chemical bond. This type of block copolyméts-3] shows a  ¢1€9 that prevents the two species from phase separating on
wealth of microphases(ii) Side-chain liquid crystalline & Macroscopic scale, and both species remain in a fluid state
polymers (LCP’s) contain liquid crystal-forming groups within the layers. Second, it was argued that the virus par-

: ; icles as well as the latex spheres can be modeled to a good
linked to polymer backbones through flexible spacers. Th%xtent to interact as hard bodies. Consequently, the driving

most prominent phase_of the_se systems is the smectic, whe]r rce causing this MPS must be of an entropic nature. This is
the LC groups form orientationally ordered layers separate |

. o X so in stark contrast with MPS in block copolymers, LCP’s,
by disordered lamellae containing the poymeric backbonegnd amphiphiles where the dependence on temperature is
[4,5]. (iii) Ternary systems consisting of water, oil, and an

A ) trong and hence indicates a predominantly energetic effect.
amphiphilic surfactant. These systems can show a variety J b y g

. . S he possibility of this type of MPS was already explored in
microstructured phases, with the amphiphilic surfactant Sta(':omputer simulation&10] and found to be qualitatively well
bilizing the oil-water interfaces and thus preventing “

MAac-gescribed within the so-called second virial approximation
[10,17, the validity of which can only be guaranteed at low
densities. However, as the experimental systems are far from

*Present address: Heinrich-Heine-Universitat Dusseldorf, Institutilute the latter treatment may not capture all the essential
fir Theoretische Physik Il UniversitatsstraRe 1, Gebaude 25.34ngredients. It has been argued that MPS in binary mixtures

D-40225 Dusseldorf, Germany. may be caused by the so-called depletion eff8¢d], which
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tatively not well described with a second-virial theory mosaic virus(TMV) [26,27. Together with an appropriate
[10,17. Consequently, a more accurate approach would beolvent this may mimic an effective rod-coil system with
required, certainly in order to resolve in detail what preventonly hard body interactions. In this system, the polymer tails
the system from demixing macroscopically. are likely to stabilize the smectic phase of the virus particles
That entropyper secan be the driving force for phase and this could be viewed as a microseparated phase.
transitions has by now been well established. There are many In order to describe this system we employ a density func-
examples ranging from ordering in monodisperse systemsonal theory in the second-virial or Onsager approximation
like the liquid-to-crystal transition in hard spherg®] and  starting from first principles. We assume that multiple over-
the isotropic-to-nematic transition in slender hard rpti3], laps between two chains as well as self-overlaps of the
to demixing in binary mixtures, like, e.g., the Asakura- chains are unimportant. All three of the above approxima-
Oosawa(AO) mixture of hard spheres and ideal spherestions, common in theoretical treatments of LCP28-31],
which is used as a model for colloid-polymer mixtures should become exact in the Onsager limit where the lengths
[14-16. In essence, the physical mechanism in all these sysf the rods involved are much larger than their widths. The
tems is the same; the gain in effective “free volume” avail-stationarity equations that determine the stable phases in our
able to the particles upon ordering offsets the loss of entroptheory are solved locally by means of a bifurcatigor,
of disorder or mixing, respectively. For the AO mixture this equivalently, linear stability analysis of the isotropic fluid
is usually referred to as the previously mentioned depletiophase[32,33. Apart from fluctuations with a nonzero wave
effect; the ideal polymers are depleted from a shell aroundrector corresponding to a microseparated phase, we also
the impenetrable colloids. Overlap of these depletion shellsonsider spatially homogeneous fluctuations with nematic
increases the free volume available to the polymers andymmetry, in order to study the competition between these
hence this system phase separates into a colloid-rich andtao types of ordering. For both phases, we obtain closed
colloid-poor fluid [17]. However, whereas entropy can in- analytical expressions for the spinodal density. We find that
duce phase behavior that is at least as rich as seen in endor long chains and nonzero difference in the widths, the
getic systems, MPS remains a very rare phenomenon in emicroseparated phase always pre-empts the nematic.
tropic systemg18]. Naturally we want to make contact with the vast amount
A variant of the depletion effect was recently discoveredof literature on thermotropic block copolymers in the weak
in theoretical treatments of binary mixtures of thin and thicksegregation limit. Most of these follow the original treatment
hard rods[19,20. These systems are seen to phase separapgoposed in the seminal paper by Leib[84]. Leibler con-
in two isotropic fluid phases due to depletion. Here, howeversidered diblock copolymers interacting via the heuristic
the depletion interaction appears as a genuine two-body ef-lory parametey and constructed a Landau expansion in the
fect[20], in contrast to the AO system, in which more-than- average composition fluctuations. By applying the “random
two-body effects play a prominent ro[21], e.g., consider phase approximation” and retaining only leading orders of
the polymer-induced attraction between two colloids whichthe Fourier modes, he was able to map out more or less the
involves at least two colloids and one polymer. Conse-complete phase diagram. Subsequent refinements extended
quently, the depletion effect in these mixtures of rods surthe theory to the strong segregation regif88], added fluc-
vives the Onsager limilength>width) applied to both spe- tuations[36], and included extra phas¢87], but did not
cies, and for rods with sufficiently asymmetric widths, change the essence of the approach. Leibler’s results have
preempts the usual transition to the orientationally orderedbeen confirmed qualitatively by experimen®ef. [1] and
nematic phas¢19,20,22,28 These predictions have since references therejnand, for finite chains length§36], by
been corroborated by simulatiofi®4,25. In the present pa- simulations (Refs. [38,39 and references thergin The
per, we propose to use the two-body depletion effects bekeibler approach treats the correlations within the polymers
tween slender rods of different diameters to construct a sysn the Gaussian levgll]. We can therefore connect to this
tem which shows entropy-induced MPS. Taking our cueapproach by applying the Gaussian limit to our model of
from the concepts developed in the field of thermotropicfreely jointed HDC's. Within this limit our theory becomes
block copolymers, we connect a chain of freely rotatingequivalent to that of Leibler as far as the treatment of the
“thick” hard rods to a chain of freely rotating “thin” hard intrachaininteractions is concerned. However, ithgrchain
rods. The above-mentioned unfavorable depletion interactiomteractions between the polymers are essentially different in
between these two types of rods provides the tendency tthe present case, as they are of a geometric nature, i.e., to-
fully demix, whereas the joinfconnecting the two strangls tally fixed by the dimensions of the composing hard rods. In
prevents this. The so-constructed system of freely jointedhe Leibler theory, these interactions are described generi-
hard diblock copolymergHDC) is in our view one of the cally by means of the freely adjustable Flory parameter. A
most simple systems conceivable showing entropy-inducetlll exploration of the parallels between the two approaches,
MPS. Furthermore, and contrary to the case of the binarjhowever, was beyond the scope of this work.
rod-sphere mixtures, where MPS may be the result of a Another class of systems, that appears as a special case of
subtle interplay of various many-body effects, the physicalour model, is the well-studied rod-coil diblock copolymers.
mechanism is both clear and robust. Of course, there is as y&hese consist of one stiffodlike) block and a much more
no direct candidate for an experimental system well deflexible part. In such systems, liquid crystalline ordering
scribed. However, it may certainly be possible for experi-competes with MPS and a number of theoretical studies have
mentalists to connegpossibly long and flexiblechemically  been devoted to the subject. Most of these combine the
inert polymers to the ends of virus particles like tobaccolLeibler approach with an additional Maier-Saupe anisotropic
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orientational interaction resulting in the appearance of a

nematic phaséand sometimes an additional smectic phase

in the phase diagram, besides the various microseparated @ (b)
phases[40—-44. However, the ratio of the Flory and the

Maier-Saupe interaction parameters in these approaches is

rather arbitrary, whereas in the present approach microsepa- g 1. An example of a hard diblock copolymer. A freely
rated and nematic ordering both result from the same geqQpinted chain oM, hard rods with dimensioris, andd, (left side)

metric origin with no room for additional tuning. ~ are connected to a freely jointed chainM§ hard rods with dimen-
Finally, there has been some related work on more idealsions|z anddg (right side.

ized but conceptually simpler systems in the context of en-
tropic liquid crystals. Hotyst considered parallel nail-shapeda
particles which showed a nematic-to-smechig-transition
[47]. As a model for surfactants, Bolhuis and Frenkel studie
nonadditive complexes of hard spheres and ide
spherocylinder-tail§48] where Schmidt and von Ferber used
hard slender rods for the tail49]. Of particular relevance to
the present work is Ref50] where Diichs and Sullivan in-

re of typer=A having lengthl, and widthd, and the last
g rods are of type B with dimensiong anddg (see Fig.
). We assume that both types of rods are very slerder,
d,, with 7 {A,B}, hard bodies, i.e., impenetrable to other
rods. The total number of segments in a chailVis M,
+Mpg and every segment has a lalmek {1, ... M} specify-

vestigate the phase behavior of hawdrmlike diblock co- Ing Its position in t_h_e chaln: The state of a segment is _de-
scribed by the positiom,, of its center of mass and an ori-

polymers. However, in this latter work only differences in entation. beind a unit vectds... pointing along its lona axis
persistence length are considered and not in thickness bg- ' 9 m P 9 g 9

tween the two components. Consequently thev onlv find" the direction of increasing. The configuration of a whole
. P L quently Ihey y chain £ is fully characterized by the position of one of its
competition between a nematic and(erientationally or-

dered smectic phase, instead of @rientationally disor- segments(say the first;ry) and the orientations of all of

dered lamellar phase. Moreover, only numerical solutions tothem’ﬂ__{wl’ ’w"’_'}’ sog—{rl,_ﬂ}. Ihﬁﬂostt'on of a seg-

the stationarity equations are presented, whereas we are afieNt M s then given by ry=ry+5% (It i)

to obtain additional analytical insight through the stability WNerelk=la if k<M, andlg if k=M, +1.

analysis of the isotropic fluid phase. Last, van Duijneveldt N density functional theoryDFT) the free energy of a

and Allen used Monte Carlo simulations to study the effectPoSSibly inhomogeneoy$iuid of molecules is expressed as

of flexible tails on the phase behavior of spherocylinders® funpﬂonal of the smgle_-molecule conflgyratlon distribution
; ofunctlon,p(l)(‘f) [53]. Using the second-virialor Onsager

[51]. This was later extended by Casey and Harrowell t i S 1S

rod-coil molecules of which the isolated rods do not posses&PProximation it is formulated as follow$4]:

a smectic phasgb2].

We show that for very long HDC's the nematic is always BHA Y] = f dépP(E{In[VrpP(&)] - 1}

pre-empted by the microseparated phase. Although our

theory is formulated for chains with a finite number of rod- 1

like segments, we devote the major part of this paper to __f f d&dg pD(€)pD(E)D(EE). (1)

chains with an infinite number of segments in which the 2

correlations between the segments are Gaussian. We formj,'1-h . . ) .

late a consistent Gaussian limit, in which the number of' '€ integrals are over single-molecule (Eonf|gurat|on Space

model parameters reduces to just three. The limit is chosen if(hgfe fwdf_f.drodﬂ and (l)fdQ—me don and Jda .

such a way that we can still consider the competition be= (g)d‘ﬁfodes'” 6. Further,p'”(§) is nOfnjfU_lZEd as follows:

tween MPS and nematic ordering. The most prominent relP ~(§)d&=N. The factor8 equals(kgT)™" in which kg is

sults are phase diagrams as a function of the model paran0ltZmann’s constant arid the temperature. The volumé

eters, showing the regions of stability of the microseparated’® call the “thermal volume” and is a product of the de

or nematic phases. Furthermore, exploiting the features dfreglie thermal wavelengths of the moleculgst,53. The

the bifurcation analysis, we are able to calculate the relativéuantity ®(£,£’) is the Mayer function of two molecules

inhomogeneous order along the polymer in the microsepatith configurations and . As we are dealing with hard

rated phase at the bifurcation point. The outline of the papefegments, the potential energlé, £') between two chains is

is as follows: in Sec. Il we define the model and develop theé® When they overlap and 0 when they do not. Consequently,

formalism. In Sec. Ill we briefly discuss the symmetry of the the Mayer function is given by

phases involved. The bifurcation analysis is the topic of Sec. n I

IV and the Gaussian limit is applied in Sec. V. Section VI is N — A N4 -4+ 'Toverap

the results section and we end with a discussion in Sec. VILI. P&,8) = exil- pu(g,8)]- 1 _{O if no overlap.

(2)

The configurations of both chains involved can be highly
We consider a monodisperse fluid Nfdiblock copoly- irregular and the dependence ®fvery complicated. There-
mers in a volumé/. Each polymer is a chain of freely jointed fore we approximate the chain-chain Mayer functidnby
cylindrical rods connected end to end where the Mgtrods  the sum of all the segment-segment Mayer functigpg,

Il. MODEL AND FORMALISM

0315083-3



P. P. F. WESSELS AND B. M. MULDER

M
®(§¢)= E ¢m,m’(rm_rr’nraa’mya’r’nr)- (3

mm’=1

This expression, to which only individual pairs of segments

PHYSICAL REVIEW EO, 031503(2004)

N M
pr(rmom == | 11 dkaeXp[ >

QJ k#m kk'=1

X f dr I:,d&)li,pkr(rl’(,,&)l’(,)qﬁkvk,(rk - rl,(,,(:)k, a)l,(’)

contribute, is actually the first term in a systematic expansion

of the Mayer function. Higher order terms involve interac-

tions between more than two segments simultanedadly
At this point we note that apart fror(i) the second virial

approximation andii) the above expression for the chain-
chain Mayer function, anotheiii) approximation has been

)

whereQ is the normalization factor; i.e., the SDF’s are nor-
malized in the same way a#": i.e., fdrdapy(r,®)=N.

Ill. PHASE BEHAVIOR AND ORDER PARAMETERS

made. In this formalism the chains are allowed to self over-

lap, i.e., other than the spatial constraint that successive seg-
ments are connected to each other there are no interactions
within the chain. All three of these approximations are com-,
monly used and corrections to the first two are small whe
[,>d, [28-30. The neglect of the effects of self-overlap is

assumed to be reasonable in a dense polymer fBélt

where screening effectively compensates the intramolecular
interactions and as a result interactions between distant parts
of the same chain are indistinguishable from interactions
with the average environment because of loss of intrachain

correlations.

In thermodynamic equilibrium, the free energy reaches a
minimum and the functional is stationary. Therefore we con-

sider the variation of Eq1) with respect top™),

BF~pp=0 (4)

_ o
5o

with the chemical potentiale playing the role of Lagrange
multiplier needed to enforce normalization. Eliminatipg
from Eq.(4) yields the(self-consistentstationarity equation,

N exp {f dg' pM (&) Dy (€, §')]

PP (&) = (5

f 4 exp { f d§’p(1)(§’)<1>M(§,§’)J

QO normalizationp

A. Isotropic phase

At low polymer number densityy=N/V, the system is in
he isotropic fluid phase, angl(r,, ®,) is a constant, so due

(9=n/47. Consequently,

J dr ’d&)’pﬂfo)@’kr(rk— r ,,(:)k,(:)l)
n N . A A
== J dw/lklkr(dk'i' dkr)Sln ’)/(O)k . w’)
A7

1
:—Zﬂﬂ|k|k/(dk+dk/), (8)
where y(@-®') is the planar angle betweeh and ' and
one can recogniz&l, (d,+dy)sin y(w, ") as the excluded
volume of two rodsk andk’ with respective orientation®
andw’. This yields the following normalization factor in the
isotropic phase:

1
Qiso= (4mMatMey exp{— 57X (M212da

+MaMglalg(da +dg) + Méléde)] (9

Choosing the dimensions of rod A as units, we define

In order to proceed, we define the single-segment distri-

bution function(SDF (of segmentm), p(rm, @y, in the
following way:

puTmom = | 11 do®(@) = [ T1 dao™®(ry(r, Q),9Q),

k#m k#m

(6)

in whichry is given byr ;- 1/25 (1, @+l 1@:1) and the
product is over all segmentsbut the mth. Integrating Eq.
(5) over all o, except form,, as well and using Eq.3) we
obtain a set of equations,

T=lg/ly, d=dg/ds, M=Mg/Mp, (10)
and a dimensionless segment density in a symmetric way,
Ti=2n(Mplada + Mgl3dg). (11)
Then, Eq.(9) becomes
Quo= (@mV exp| - T LEMDEIMID | - g
4 (1+M)(1+MI%d)

where we have also uséd=M, +Mg. We also note that the
normalization factoiQ,, is exactly the partition sum of the
block copolymers in the isotropic phase.

B. Nematic phase

In the (uniaxial) nematic phase, there is orientational or-
der with respect to a directiom however, the system is still
spatially homogeneous. Therefore the SDF can be expanded
in Legendre polynomials,
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“2j+1 densities. Different solutions may bifurcate at different den-
P, @) = pr(®) =N, —— (”Pj(&) M), (13)  sities from the isotropic phase. Generically the particular so-
j=0 4m lution which bifurcates at the lowest density, will give rise to
the ordered phase that is the first to become thermodynami-
cally stable with respect to the isotropic phase. In this sec-
0 — A, A ., tion, we perform a linear stabilityor bifurcation analysis
nay = | do'Pj(@" - A)pp(@”). (14 around the isotropic parent solution, along the lines of Refs.
[31-33. Consequently, we assume isotropic distributions
Due to normalizationafﬁ):l as it is in the isotropic phase with a perturbation of lower symmetry,
and due to up-down symmetry of the nematic,a#ﬂzo for
oddj (in the isotropic fluidal’ =0 for all j # 0). The lowest- (1 @) = — + 8 4(1,@), (17)
order coefficient different in the nematic and the isotropic Am '
phase isaﬁ? which is the usual Maier-Saupe order parameteryhere the proper normalization of the SDF requires
The physical incentive to form a nematic is that the averaggdr dopy,(r,@)=0. Inserting this in the stationarity equa-
excluded volume between rods is smalland therefore the  {jons(7) we linearize the exponent with respect to the infini-
average free volume available to the rods is largerthe  iasimal parametes,
nematic phasgl3].

with coefficients

M
exp[ E fdr’dEo’pk,(r’,&)’)d;kvk,(rk—r’,&)k,&)’)]

C. Microseparated phase

kk'=1
Microseparated phases consist of alternating regions rich 1 M
either in type-A or type-B rods and are typically governed by = expl - = Lo (de+d
a single dominant wavelength. These phases exist in a vari- 4" kkz,zl e (A + )

ety of types exhibiting various degrees of symmetry, e.g.,

lamellar, hexagonal, bcc, and even more exotic morphologies Ly L~
like the gyroid phas§l,37]. In this paper we do not consider X<1 +e2, | dr'dd’p(r’,&")
the various symmetries of microseparated phases but focus

on the magnitude of the dominant wavelength and the den- o

sity for which it becomes unstable. To that end, we observe X(ﬁk,kr(rk—f’.wk,w'))- (18)

that the SDF can be expanded in terms of plane waves,

kk'

0= 7 N g 15 Equating orders irs, to zeroth order, we re-obtain the iso-
Pr(T @) = u Pr(q, @), (15) tropic result, Eq(9). To first order this yields the so-called
s bifurcation equations,
with . some set of wave vectors and the “coefficients” given

~ n ~ ~
by pm,l(r ms wm) = —M J H dwknz dr ,d(,l),
lf i \ @m ) pm e
pm(d, @)=V | dr'e?® r',w). 16 D~ LA A,
p(@) i) ( Xpp a(r', @) ¢y (r=r', o 0'). (19)

In general there will be orientational order within the do- These can be interpreted a generalized linear eigenvalue
mains and consequently the coefficients still depend on thgroblem with eigenfunctiong,,;(r , @) and eigenvalue, the
orientation. If needed, one could proceed and expand thesgfurcation density. There is an infinite hierarchy of solutions
coefficients again in spherical harmonics. However, in ordefg Eq. (19) for varying degrees of symmetry. However, we
to simplify the analysis, this additional order in the mi- gre only interested in the orer the few corresponding to
croseparated phase is usually neglected, which, as we wilhe |owest bifurcation density. Note that the explicit depen-
show in Sec. V, is permitted in the case of infinitely long dence on the normalization fact@ has dropped out since
polymers. In homogeneous fluid phases like the nematic, thgytegration overr,, and &, trivially yields zero on the left
SDF is independent on the spatial coordinate and only thand side by definition and, after rearrangement of the inte-

coefficientpy(0,w) at zero wave number survives. grals made possible by the finite range of the Mayer func-
tions ¢ s, also on the right hand side.
IV. BIFURCATION ANALYSIS In order to make the bifurcation equation, E#9), more
transparent we define for the moment as an auxiliary quantity
A. Bifurcation equation the fields

At low densities, the isotropic phase is the globally stable
phase, but at higher densities it will become unstable with H,(r, &) :E dr'de’ per 1(r',0") e (T =r", @, @)
respect to lower symmetry phases exhibiting some form of K’
ordering. Points where these lower-symmetry solutions (20)
branch off the isotropic solution are called bifurcation points
and the densities at which this happens are called bifurcatioim terms of which the bifurcation equation becomes
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=sin x/x is the spherical Bessel function of zeroth order. We

PnaTm®m) = 3> | I daneH(re@). (21)  proceed by solving Eq25) to which we refer ashe bifur-

(4 )M 4 i i
K'#m cation equation from now on.
However, this fieldH, is a function ofr, and o, whereas on _ _
the left of Eq.(21) we have a function of ,, and , And B. Nematic solution
these are not independent since We first consider the nematic solution, which is also the

(22) simplest. In the nematic phasg=0 and the orientational
integrals in the bifurcation equation are trivial and it reduces
where the vectorial “path’P , betweerk andm is given by  to

M= rk"'Pk,mv

m-1

~ ~ n ~ g ~ N\ A Ay
Pk’m = % 2 (lkra)kr + Ik,+1&)k,+1), (23) pm,l(wm) = EE dw pk’,l(w )d’m,k’(wmiw )i (27)
kf

k'=k

for k<m. Further, P,,,=0 and the case ok>m can be Wherepn(&y)=pn1(0, @) and

obtained by realizing thaPy ,=—Pm k. Consequently, the in- - a . -

terlying orientational integrations in Eg21) have to make b (@, D) = = linlicr (O + )| O D oy | (28)

the connection and “transfer” the field from segmédats m.
We return to Eq(19) and insert the constraint, E(R2)

via a delta function

is simply minus the excluded volume of two rods with fixed
orientations,®,, and w,,. This bifurcation equation is the
same as that of a mixturdisconnectedods [20], so for
R n R orientational ordering the connectivity of the rods within the
P my @) = Wz f I1 d“’k”f drS(rm =it P chains does not play a role. The kerrgl, is now only a
kT Kem function of the planar angle between the orientations of the
«S [ ardarpu .80 ron,|.wm>< W |=| sin y(w'm )l C A due to this
- ' uniaxial symmetry the eigenfunctions é#, . and therefore
of Eq. (27) are simply the Legendre polynomial (see
Xy (M= 1", 0, @) (24 Appendix B,

Next, we observe that in Eq24) there appear two spatial e U o
convolution integrals. Therefore it makes sense to proceed do’ pmp (@, @")Pj(@" - ) = = Iyl (dy + di)siPj(@ - ),
with a Fourier transforni.e., §(q)=V 1/ dr 9 mg(r )],

yielding (29

with s; the Legendre coefficients g$in y|. In case of the
pm1(d, @) E IT dée@Pkm nematic phase, it is well known that this becomes first un-

(4” K'#m stable with respect to the modg=2, so ppyi(wm)

A :(5/47r)nc§§)P2(&)m-ﬁ) with cﬁ? the Legendre coefficients.
X > do’ pe 1(9, ®") Py (4, @y, @) Then, the bifurcation equation becomes
n
(25) o == 22 I (G + )50 (30)

This is the general form of the bifurcation equation for a “

lower-symmetry solution bifurcating off the isotropic-fluid with s,=-7?/8. This is anM X M matrix eigenvalue equa-
parent solution. Note that the vector is the same for all tion and therefore in principle much too large to solve. How-
segments. Furthermore, at this point, we have not yet specéver, by observing that the geometric factor on the right hand
fied the internal structure of the polymer, only that it is aside does not so much depend on the segmenks but on
chain of cylindrically symmetriqrodlike) segments which whether they belong to A or B, we can split the summation,
contains no closed loops. Concernmg the rodlike segmentSyx = ETEWET with 7=A,B. Then, we can define the “type-

the Fourier transformed Mayer functiahy . is calculated in ~ average” coefficients; 2)‘(1/|V| JZme£2 and Eq.(30) be-
Appendix A and is for very slender segmefits>d,) given =~ comes

by
. " . @=T S M(d,+d,)c?, (31)
¢k,k'(q,wk, wk,) ==l (d + dk')|wk Dwk,| 32, =A,B

(1 ~ ). (1 ) Rewriting this in terms of dimensionless quantities,
X Jo Elkq “wy|]o Elk’Q'wkr , (26)
il
Co= 71-—Gzcz (32)

where we have already discarded higher-order terms contain- 321 + |\~/|~|2(~j)

ing (d,+d,/)q as the wave vector will be at most of order
1/lpp so these terms will be small. The functigg(x)  with
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1~~~ ~ m-1
1 5M|(1 +d) @ IT jo@l) for k<m-1
Go=| | and c,= ( (“2)) Fiom(@ = woier (39
ET(l +d) MIZd G 1 for k=m-1,m,

(33) which is symmetric sd~ () =F,(Q). Inserting this in the
bifurcation equation yields
we now have reduced the problem to a simpbe 2 matrix
eigenvalue equation. There are two solutions for the density, - - n ~ AN A Ay
'genvaiu quatl W Ut "y pm,l(qiwm) = ZTE dow pk’,l(qvw )¢m,k’(q1wm1w )
k/

_ 321+Mi% P
q, = S2LMID) o 4 7G, - 4de,)/(2deG,),

n
T +

Ee”m,k(llz)iq'lm&’ml: (Q)E
(34) (4m)* S

with det and tr denoting the determinant and trace, respec- ain, 1 AR -,
tively. As the determinant o, is negative, only the minus X f dowde COS(EQ ' lk“’)’)k’vl(q"" )
sign in Eq.(34) yields a positive bifurcation density,e, SO ~
~ X ¢k,k’(qva)1 (:)’), (39)
- 32(1+Ml%)

Nnem= T(UGZ— VG, - 4deG,)/(2deG,). where oy ,=sgrim-k) is the sign ofm—-k. Instead of the
other “end factor’ exfy,,4iq-l@ we have used
(39 codlq-l@) as within the integral only the even part i
Note that, within the context of the model as introduced insSurvives. The first term on the right hand side is due to the
Sec. I1, this analytic expression for the nematic bifurcation isinfinitesimal fieldH, directly on segmenty; the second term
an exact result. In the wider context of liquid crystalline contains the contributionsi, on segment&# m which are
polymers, a more general derivation of the nematic bifurcabeing transferred to segment via Fr,. At this point we

tion density can be found in Reff33]. note that it is impossible to solve E@39) analytically for
_ _ generalg and we will introduce an approximation justified
C. Microseparated solution for very long polymersM,,Mg> 1. In this case the relevant

In a microseparated phase, the wave veqtds nonzero  Wave vector is expected to be small in magnitude and con-
and the orientational integrals in the bifurcation equations€duently, the end factors as well as the wave dependence of
have to be performed explicity. However, we can makedy are negligible. Therefore we replace them by their ze-
much progress by observing that most of the integrals areoth order approximations iq,
still trivial, i.e., if segmenk” does not lie betweekandm it .
does not help to “pass on” the infinitesimal field, Brge (1, @) = = i (A + dr) | oy Do | (40)
or equivalently, there is no dependence in the factor
exp(-iq-Pe ). Consequently, thesél—|m-k/-1 integra- and
tions each contribute a factgidw=4= which is in total 1
(4mM-ImK-1_0On the other hand, concerning the intermedi- exp(amyk—iq -Imfom> =1,
ate segment&” betweenk and m; the only dependence on 2
wy is in the pathPy .. Therefore, suppose for a moment that

1 A
k+1<m, cos<5iq : Ikwk> =1. (41)
m-1
IT daye™@Pkm Then the bifurcation equation becomes
K'=k+1
m-1 ~ ~ n A a AN\ A Ay
= e—(1/2)iq-|k£uk( H f d(;)e—iq-lk”zo> e—(1/2)iq-|mfom, (36) pm,l(qnwm) = ZT% do’py 1(9,@") dm (O 0")
K'=k+1
n A an -
and it is easy to show that +—— > F( @ | dodd’ Py 1(9,0")
(477) k#m K’
i sin gl ) R
dwe™ W = 47 q =4mjo(qly), (37) X e (@,0"), (42
k// ’

where we have useg=qg with q being the length and the Where again as in the case of the nematic solutions,
unit vector § the direction of the wave vector. Whem ¢ (@,@’) has the convenient property that it mapson
+1<k, there is an extra minus sign @&,,=-Pyny, but this  P;. Then the only mode for which the second term on the
does not change the resg&7), only the end factors in Eg. right hand side of Eq(42) survives(and we have wave de-
(36). Consequently, we define the factor pendencgis for P,. [For j # 0 we simply re-obtain the nem-
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atic bifurcation equation, Eq30).] Consequently, integrat-

ing both sides ovei,, we obtain

n
e (@) == 52 Fni @2 o (A + )0y (@),
k K’

(43)

where we have define«:{g)(q):fd&)mﬁmyl(q,(bm) and where

f Ay (@,®") = = I o (d + dy)So, (44)

PHYSICAL REVIEW EO, 031503(2004)

lem but this time the plus sigisee again Eq.34)] yields the
physical bifurcation densityfiy,,s for the microseparated

phase(mps,
~_ AL+M)(L+MI%) (
mps_ 7TM
+\trF(q)Go] - 4deF(q)deG,)/[2deF(q)deG,].
(49

tr[F(a)Gol

with sozﬂl_. The rest of the analysis is similar to the nematic apart from the approximations made in formulating the
case: again we have @M X M eigenvalue equation and we mogel, Sec. II, Eqs(40) and (41) constitute the only two
make use of the property of the geometric factor that it defyrther approximations. From E¢49) it is observed directly
pends on the types involved and not on the segment labelgyat the spinodal segment density of the microseparated

hence 3, =33 ., with 7=A,B. Defining C(TO)(q)
:(1/MT)EkETC(kO)(q) and FT,T’:(]-/MTMT’)EmETzk’ET’Fm,kv
EqQ. (43) becomes

hn
(@) == X F (DX MMl (dy +d)el (@),
T, 7_[/

(45)
Rewriting in terms of dimensionless quantities, we obtain
MM
Co(a) = = = ——~ F(@GeCo(a)  (46)
4(1 +M)(1 +Mld)
with
Lo~  ~
Go= and cy(q)= (Cf}» )(q)-
B

1~~ ~ ~ e
EMI(l +d) YEE

(47)
The elements oF(q) are
F —L<M +—
AATMZATA T 1 -jo(al)
o oala) - [j0<q|A>]MA}>
X{(MA DT )
Fae=Fga
:(il—[jo<qlA>]MA><i1—Uo(qIB)]MB)
Ma  1-jo(alp) Mg 1-jo(alg) ’
(48)

and
z -L(M 2
PEOMELTE T L-jo(ale)
Jolale) - [jo(qIB)JMB}>
1-jo(dlp) |

x{(MB—l)

Again there are two solutions for thisxX22 eigenvalue prob-

phase scales with M, contrary to the nematic spinodal, Eqg.
(35), which does not depend av. Consequently, for long
enough polymers the system will always become unstable
with respect to the microseparated phase. Furthermore, we
note that for infinitely long chaingM — «) the approxima-
tions become exaatand the density needs to be rescaled,
M). If the chains are not long, the approximations, £46)

and (41) will not be valid. An interesting case is, e.g., rod-
coil copolymers wheréM,=1 andMg is large. The type-A
rods will tend to form a smectic which the type-B tails are
likely to stabilize[51,57. In this case, Eq(39) has to be
solved numerically or in some othdapproximate way.
Moreover, the ordering of the type-A rods is then likely to be
dominated by an orientationally ordered density fluctuation,
e.g., possibly expq-r]P,(4-®), instead of the simple
exdig-r] which we have in the present case. Finally, we
note that the specification of the geometry is contained in the
matrix F(q). Using other geometries, e.g., ABABAB re-
peating multiblock copolymers or branched geometries, do
not change Eqs(39) and (49) but only the form ofF(q).
(The only requirement is that there are no closed loops
within the polymergq33].)

V. GAUSSIAN LIMIT

In this section, we construct a consistent limit for infi-
nitely long chains of our model. There are several reasons for
this approach. First of all, there is a large body of literature
dealing with so-called Gaussian chains, i.e., polymers which
are coarse grained on the level of the radius of gyration, and
we want to make contact with those treatmeit4]. Sec-
ond, we do not fully control the quality of the approxima-
tions, Eqs(40) and(41), made for chains of finite length. It
is clear, however, that these approximations become exact
for infinitely long polymers. Finally, by introducing this lim-
iting case the number of effective model parameters is re-
duced, resulting in a conceptually simpler system. The limit
of M,,Mg— o does require that some of the other param-
eters be rescaled as well.

In the Gaussian limit, the relevant length scale is the ra-
dius of gyration or equivalently, the mean-square end-to-end
distance. The mean-square end-to-end distance is defined as
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2= Lo b, (50) hence effec_tlvely setting _the incentive for demixing. Again,
other (possibly more suitabjesets of model parameters

could be constructed fron{lA,|\~/I,~I}, e.g., in literature on

where.<>'denotes 'the average over a S|'ngle chiaify. m a4  plock copolymers, length asymmetry is often characterized
freely jointed chain there is no orientational correlation be-by a parametef which ranges from Qonly A par to 1
tween the segments so for our block copolymers, the meangny B pary and which in our case would be identical to

square end-to-end distance is sSimpReM,l3+Mgl3. This =~~~ = . .
allows us to define the dimensionless wave numbeij as MI/(1+MI). However, we have not explored this and simply

=qx. use the parametefa\,M,I} which appear naturally in our
The Gaussian limit then becomes approach.
| 0 51 In our GEuNJssiaD limit, the determinant @Gf, goes to zero,

M;—, and |,— (51) detG,=-:MI%1-d)>—0. Consequently, we can expand
for 7=A,B and with the productsM? constant. Further- Eq. (35) for small detG, and we obtain for the nematic
more, also the ratio®! andl and therefore the mean-square bifurcation density in the Gaussian limit,
end-to-end distance keep their values. The Onsager limit
for the segments requires that the lengths of the rods remain _ 32(1+ |\~/|~|2) 32

. . s = — , 54
much larger than their widthd .>d,), so the latter should Nnem AG,d=1) T (54)

kK’

vanish equally fast,

d,— 0, (52)  which, conveniently, is a constant independent of model pa-
rameters. Setting the first element of the eigenvector to 1,

) ) ) ) Crem=(1,Chem), this is very simple in the Gaussian limit,
The ratio of widthsd is also kept constant. Equationsl) Cren=1. Therefore, at the bifurcation of the nematic solution
and(52) together constitute the Gaussian limit for our block “em " ~ ™" " ] ~
copolymers. This limit guarantees that the bifuration densitythe infinitesimalorientational order of the B segments is

for MPS lies at finitechain number densityn, i.e., it can be times larger than that of the A segmefi#d]. .
seen from Eq(49) that M7 keeps its value. The remaining ~ Concerning MPS, we first calculate the elements-aoh

model parameters are thigeometrig ratios M, T, and d. the Gaussian limit,

for =A,B andwith M%2d, (or equivalentlyM d,) constant.

Alternatively, another set of model parameters can be con- 12 6 ,
structed; i.e., {M,l,d}—{M?°d,MI(1+d),MI%}. Here, FA,A=q—2 1 q—z(l—e'qA’G)
A A

M22d is the total excluded volume of the B blocks of two
different polymers in units of that of the A blocks and

%Ml(l +Q) is the total excluded volume of an A t_)lock With a Fap=Fga= %(1 _e—q,i/e)%(l _ e—qg/e),
B block in units of that of two A blocks. The third quantity ’ ©Oa (o
MI? is the ratio of the sizes of the Gaussian A and B coils of
a polymer. 12 6 )
We want to take the Gaussian limit in such a way that the Fes=—3)11-3(1 -/ ¢ (55
nematic and microseparated bifurcation densities remain of Os B
the same order of magnitude so that we can compare them.,
This extra requirement is nontrivial as can be seen from EqVith
(35) and(49) because our dimensionless dengigy, scales .
with 1/M (and thus vanishes in the Gaussian linaindf, o, i ,  G°MI?
is independent oM. We can cure this divergence in a some- Oa = 1+ M2 and dg= (56)

what unconventional way by letting the difference in thick- 1+MI?
ness of the A and B segments vanidh; 1. In this way, the
incentive for MPS is much reduced afigl,s “pulled up” to
nonzero densities comparable Tig.,, This is corrected by
letting thechain number densityn go to infinity in order to
keep the effective strength of the interaction constant. So i
addition to Egs(51) and(52), we have

The determinant of G, also goes to zero, d&p=
-1/4M22(1-d)>—0. Next, expanding Eq(49) for small
det G as well, we obtain for the bifurcation density of MPS
gp the Gaussian limit,

AL+M)(1+MIZd) tr(FGy)
7™ detF detG,

a —1 and n—ow (53 T:]mps: _Jim
d—1

with A2=M(1-d)2 and i=2n(Ml2d,+Mgl2ds) constant. 161+ (L + FiTD) tr(F&.)
Then, our reduced model has three parametersand I, = —— ™o ,
governing the composition and relative size of the copoly- mAZMA2 det

meric blocks, anaTS, describing the remainin@nfinitesimal _
difference in thickness between the two components anwith Gy=Ilimg_,;G,,

(57)
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FIG. 2. Bifurcation density for the microseparated phase vs the FIG. 3. The minimum of the bifurcation density for the mi-

magnitude of the wave vector fof=1 and A=4 and M croseparated phase vsihfor A=4 and={0.25,0.51,2,4 (right
={5,4,3,2,} (from top to bottom. The nematic bifurcation den- to left). The nematic bifurcation densif§,e,=32/7=~10 is con-
sity Mipem=32/7~10 and has no wave dependence but is drawn agtant and drawn as a straight line for comparison. Inset: the wave
a straight line for comparison. Due to symmetr(;{l\~/| 0 length for which the bifurcation density of the microseparated phase

—{1/M,1/1}) the curves foiM are the same for M. is a~minimum,7\min:27r/ﬁmin vs M for the same parameterd:=4
andl1={0.25,0.51,2,4 (also from right to lef}.

Gaz 1wl (58) comes unstable with respect to the nematic phase at the den-
0 Ml maz | sity "=Npem=32/7. For a curve of which the minimum
reaches below the horizontal line, the system becomes un-

Additionally, we note the symmetry in the A and B types, stable with respect to a microseparated phase with wave

i.e., the transformatiodA,M 1} —{A,1/M,1/I} leaves the length Ny =27/Gymin @t the minimum densit)'ﬁ=ﬁm2). In

results unchanged. Again, writing the eigenvector as followsFig. 2, we have set the A and B segments to equal length,
Cmps=(1,Cmpd, We obtain a simple expression in the Gaussi=1 and the demixing parameter 3=4. Starting with an

of A at the: bifurcation. The minus sign 1S due to the differ- M to one, the curves shift to lower densities untiMag 1 it
ence ofr in phase between the density waves of A and B,

i.e., where the density of A is enhanced, the density of B idS at its lowest position. Uplorl‘ alftjrther decreaseVffol-
depressede™=-1). The absolute value M] is ratio of am-  lowing the sequenc#1=11,;,3.3.5}, we again follow the
plitudes of the two waves. We note that no assumptions haveame curves in Fig. 2 due to the symmeti,M,I}
been made with respect to the symmetry of the nascent mi-, {A 1/M,1/1} and the choicé=1, but now from the bot-
croseparated phase. This symmetry only appears in a highgm to the top.

order bifurcation analysi§57] which we do not consider We have numerically determined the minimum of the
here. The matrbF contains the correlations within the poly- \mps bifurcation density with respect to the wave vector, Eq.
mer and is seen to feature the so-called Debije functlonsc57), and plotted that in Fig. 3 as a function BF for a few

go(X)=(2/x){1-(1/x)(1-exg-x])} reflecting the Gaussian " ~ g _
character of the correlations. In the Leibler appro#g] differentl. We observe the~same trend we saw in Fig. 2: for
these appear in a similar way and therefore the correlationgery asymmetric polymersvl <1, the minimum MPS bifur-

are treated on the same level. cation density is very high. Increasing, the bifurcation
density goes down until a certain vali# (depending ori)
VI. RESULTS after which it goes up again. As shown in Fig. 3 some of the

curves reach below the horizontal line marking the stability
limit of the isotropic phase towards nematic ordering. Con-

In Fig. 2, we have plotted the analytical bifurcation den-sequently, in the intermediate region the microseparated
sity of the microseparated phase, E§7), as a function of  phase is probably the most stable phase, whereas for the
the wave vector for various values bf. Most importantly, ~more asymmetric polymers MPS is likely to be pre-empted
all curves have a minimum for a certain wave vector. Inter-by the nematic phase. Furthermore, there is also a depen-
preting the bifurcation point as the spinodal, where the isodence or, i.e., increasing the asymmetry between the A and
tropic fluid phase changes from being stable to unstable, thg gegmentgl or 1/1> 1), the curves shift to higher densities.
system becomes first unstable for fluctuations with a wav ~ ~

e note that the curves forcan be mapped on those forl1/

length corresponding to the minimum density. We have aIsd i v in th del A In the inset of Fi
plotted the nematic bifurcation density, being a constant in- ue to symmetry in the model parameters. In the inse S '9.
dependent of the wave numbey in Fig. 2. For the curves 3 we have plotted the value of the wave length27/q

which lie totally above the horizontal line, the system be-corresponding toﬁmg) vs M. There is a rough correspon-

A. Bifurcation density
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show the symmetry with respect M —1/M. In Fig. 5, the

phase diagram is plotted fd vs|. The same observation as

in Sec. VI A can be made: for asymmetric polymers, the
nematic phase is the most stable whereas for more symmetric
ones the MPS can be stable. Of course the amount of area in

Fig. 5 depends sensitively oh. Note thatl plays a very

similar role adVl. Naively, one might expect that a difference
in lengths of the segments would also increase the tendency
to microphase separate or at least not counteract to it. How-
ever, this is not the case, and only the difference in thickness,
- o~ o~ even though only infinitesimally small in the Gaussian limit,

FIG. 4. Phase diagranM vs A for I=1. For the region marked drjves the occurrence of MPS, in line with earlier work on
with “Nem,” the lowest bifurcation density is the nematic and for binary mixtures of rod$20]. Potentially, length differences
the region marked with “MPS” this is the microseparated phasepatween the component rods could drive MPS within the
The inset is the same phase diagram except that the verti~ca~l axis fSmatic phase, but probing this would require the numerical
logarithmic to show the symmetry with respect #M.I}  solutions to the full self-consistency problem, currently be-
—{1/M,1/1}. yond our scope.

dence as a function dfl in that the lower the MPS bifurca- C. Inhomageneous order parameter along the polymer
tion densities in Fig. 3 connect to the higher wave lengths in  The elements of the eigenvectors at the bifurcation point
Fig. 3 (insed. In general, we have observed that the waveas discussed in Secs. IVB and IV C contain information
lengths for which the MPS is the stable phéseer the nem-  about the relative amplitude of the nascent ordering with
atic) roughly lie between 1 and 1.5 times the mean end-torespect to the homogeneous and isotropic parent phase.
end distance, i.e., the polymers get somewhat stretched atHowever, by construction these quantities were averaged
the phase transition, which is consistent with a more anisoever all segments either of type A or B. In case of the nem-
tropic shape of the polymer coil. atic ordering, this also coincides exactly with the order of
each of the segments individually as there is no orientational
coupling between the segments and these therefore behave as
being independent. However, in case of MPS, there clearly is
In Figs. 4 and 5 we present the phase diagrams. We havg spatial coupling between the segments and, consequently,
numerically computed the model parameters for which theyne would expect a different degree of ordering for segments
minimum MPS bifurcation density equals the nematic bifur-ywhich are close to the free end than for segments of the same
cation density. In Fig. 4, the phase diagram is given in termgype which are close to the joint. For symmetric polymers,
of M vs A for equal length segments=1. For low A the  those segments which are close the joint are subjected to two
incentive for MPS is too weak and the MPS bifurcation den-counteracting density waves and will order less than those at
sities are higher than the nematic ones everywhere. Increatiie free ends. In order to quantify this inhomogeneous order

ing A, the MPS becomes stable fit=1 (totally symmetric ~ @long the polymer, we have to compute the components of

~ ~ ; - 0) ;
diblock copolymey and increasing\ further the range oM the M-dimensional vectot,,’ [Eq. (43)]. In Appendix C we

for stable MPS grows correspondingly. This is not surprisingexplain how these are obtained from the type-averaged two-

. . . . L dimensional eigenvectors(TO) by means of an additional
as the MP.S bifurcation density ;cales simply W'.tmg'./ The quantity: the half type-averaged matiix. In the Gaussian
inset of Fig. 4 shows the vertical scale logarithmically to

limit, this M-dimensional vector reduces to the following
two-dimensional eigenvectgwith a prime:

B. Phase diagrams

5 T T T
: cO(seA
af c(9) = (C,QO)ES _ B; ) , (59
3r which now depends, on the continuous label[ 0, 1], where
M | 5e[0,1/(1+|\~/l)] implies se A and 5e[1/(1+|\~/l),1] im-
2__ pliesse B. In Figs. 6 and 7 we plot the componentscgfs)
1k along the polyme(as a function o) for increasingVI andT,
- respectively. The demixing parameter is taken toMved.

croseparated phase has been assumed.

o In Fig. 6 we start from the symmetric casf\é,:l andl
FIG. 5. The same as Fig. 4, but ndwvs| for A=4. The inset =1 where the profile is also symmetric arouswl0.5. All A
shows both axes logarithmically. segments have a positive inhomogeneous order parameter

% I 3 3 1 We emphasize that no symmetry of the underlying mi-
1
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2 ' - ' - surprising that the point of zero order shifts to the right.
Additionally, the B segments are much longer and therefore
the spatial correlations persist over largeexplaining the

more smooth profile on the B side. It has to be noted that

some of the profilesespecially for higher values &fl and|

in Figs. 6 and 7, respectivelare taken at bifurcation densi-
ties far above the nematic bifurcation. We have, nevertheless,
included them, being instructive in explaining the observed
trends.

0 0.2 0.4 0.6 0.8 1
VII. CONCLUSION

FIG. 6. Relative inhomogeneous order parameter along the
polymer at bifurcation in the microseparated phaséf,)(s) for s

e[O,l/(1+l\~/|)] and c’(BO)(s) for 3e[1/(1+M),1]. Parameters are

We have considered a fluid of freely jointed hard diblock
copolymers. The two polymer blocks A and B consist of
= ) S _ slender Onsager rods of different dimensions interacting via
A=4,1=1,andM={1,15,2,3,4,5,7,Jincreasing in the direc- 4y pody repulsion only. We apply a DFT approach in the
tion of the arrow. The normalization is such that the averages OVelgacond virial approximation from first principles, and ana-
¢'Y(seA) andc'P(seB) equalcy’=1 andcy’=-1/(M), re- |ytically construct local solutions to the stationarity equa-
spectively. 'I~'he full circles indicate the “joints” of the A and B parts tions, by means of a stabilitgbifurcation analysis of the
ats=1/(1+M). isotropic phase. Spatial as well as orientational degrees of
] _ ) ) freedom are taken into account and consequently we obtain
(i.e., ordering with the density wave of)fand all B seg-  the spinodal densities for both the microseparated and the
ments have negative ordedensity wave of Band the av-  nematic phases. It is shown that for long polymers the sys-
erage of A and B is +1 and -IMI)=-1, respectively. As tem always becomes unstable with respect to the microsepa-
expected, the segments close to the joint nearly have zemated phase first. Consequently, this means that entropy can
order, whereas closer to the ends the order is larger. Increagxduce MPS in much the same way as it has been found to

ing M, the B part of the polymer becomes larger than the Ainduce other forms of spontaneous ordering before. Further-
part and the joint shifts to the left. The normalization remaingmMore, the mechanism is determined solely by (i&erence
such that average order of the A segments is still 1 and thdf) dimensions of the rods and therefore has a conceptually

e TNy = 1 /N -+« .o Simple geometric origin.
of the B segments is ~1W1)=-1/M. However, it is re In order to make contact with the literature on thermotro-

mark_able that t_he_B segrngntfs close to the J(_)'nt obtain %ic block copolymers we take the limit of infinitely long
positive order with increasinlyl, i.e., they order with respect polymers in which the approximations become exact. In ad-
to the density wave of A instead of that of B. This is due togjtion, by assuming a vanishing difference in thickness of the
the fact that in the polymer thgre is much more material fromyyo types of rods, we can still study the competition of the
the B part. Consequently, this effect becomes stronger fomicroseparated with the nematic phase. We present phase
largerM. In Fig. 7, we start again from the symmetric case,diagrams in terms of model parameters showing the regions
M=1 andl=1. Subsequently, the ratio of Iengtﬁs’s in- of stable microseparated or nematic ordering. We also
creased and we see that the derivative of the profils to Present the inhomogeneous order parameter along the poly-
jumps at the joint. Furthermore, as in Fig. 6, the joint shiftsmer at the bifurcation of the microseparated phase.

to positive values but here the A segments have a much more In the present study, we have solved the stationarity equa-

s - T tions up to first order in a bifurcation analysis. This yields,
cionstant profile than the B segments. By increasingile apart from the location of the spinodal or bifurcation density,

M remains constant one effectively increases the amount anly the magnitude of the density wave vector and the
material in the B part of the polymer. Therefore it is not gpherical harmonic mode to which the isotropic solution be-
2 : : : : comes unstable. However, the symmetry of the bifurcating
microseparated solution is typically determined by one or
more mutually independergbut equally long vectors span-
ning the periodic phasg.g., lamellar, hexagonal, or hcén
order to obtain information on the mutual orientation of these
lattice vectors, and thus on the symmetry of the phase, a
higher order bifurcation analysis should be performed
[32,57,58. From these higher order bifurcation equations, it
is also possible to determine whether the phase transition is

2 . . . \ of first or second order and in the latter case one could in
002 04 06 08 ! principle go on to construct the full equilibrium solution far
away from the bifurcation point32).
FIG. 7. The same as Fig. 6, but now fa=4, M=1, and| We have not checked the validity of the approximations,

={1,1.5,2,3,4,5,7,3increasing in the direction of the arrgw  Eqs.(40) and(41), for finite values ofM. However, we can
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make a crude estimata,posteriorj by concluding from Fig. work was part of the research program of the “Stichting voor
3 that the bifurcating wave length is of the order of the mearFundamenteel Onderzoek der Mater{&OM), which is fi-
square end-to-end distance=\/x~1. Consequently, the nancially supported by the “Nederlandse Organisatie voor
wave vector is approximate[ﬁ:ZTr/X~277 and if we as- Wetenschappelijk _Onder.zoeI(N\'NO).' If’.P.F__.W. would like
sume for a moment that the type-A rods and type-B rods art? th_ank the He|nrlch-Heme?l_Jnlversn_at Dusseldorf _fo_r hos-
more or less equally long, then the mean-square end-to-erRit@lity, where part of the writing of this paper was finished.
distance is®~ MIZ. This in turn implies that the next order

corrections in Eqs(40) and (41) will be of order(zﬁqlA)2

~(% x 27)°/M ~10/M. [In fact, the first order correction in ~ APPENDIX A: FOURIER TRANSFORMED SEGMENT-

(2gl) in Eq. (41) does not contribute to the value of the SEGMENT MAYER FUNCTION

bifurcation density, but only to the form of the eigenfunc- The Mayer functiongy s of two cylindrical rodiike seg-

tion.] Consequently, already for this crude test case, th O . . -
length of the polymer should bet least longer than %jentgk [with dlmenS|onslkA,/dk, gnd coo_rdlnat_e(i'k,wk)] and
10 (M>10) in order for the corrections to be smaller than K [With li,di and (re,w,)] interacting via a hard-core

the leading term. This suggests that much higher valudé of Potential(i.e.,==,0 if overlap/no overlapis given by

are required for the present approach to yield quantitative ~1 if overlap
agreement with the “true” behavior. (R ) (A1)
In any case, it would be very interesting to extend the 0 if no overlap.

pres_ent approach to finite value_s Idf H.ovyever, this .is not e decompose the spatial vectqqq(,:rk—r,’(, in terms of the
straightforward, as the correlations within the chain WOU|dorientations '

become non-Gaussian. One strategy could be to solve EQq.
(39) directly numerically but this could become tedious for Mk = X+ X D + X Dr (A2)
large numbers of segments. Another strategy would be to
make an expansion in M using the Gaussian limit as a with @y =(@x0d,,)/| @0, | the unit vector in the perpen-
reference state. This last route was followed by Fredricksomicular direction. There is overlap between the two rods for
and Helfand[36] for Leibler's diblock copolymers and the the following ranges of the coefficients: x,
results were confirmed by simulatio[&8]. Indeed, thereisa e[-I,/2,1,/2], Xue[-lx/2,0/2] and X € [—(di
need for such a better-than-Gaussian treatment, especiallyy,,)/2 (d,+d,)/2]. Next, the Fourier transform of the
when the typical ordering length scales are of the same siz P ST
as the components, e.g., for side chain liquid cry:stalling\ﬁayer functiongyc is given by
polymers forming a smectif59,6Q. - o . o

As already mentioned in the Introduction, there is as yet Pk (0, &k @) :fdfk,k'e_'q'rk*'<l'>k,kr(fk,k'ywk, ),
no experimental system exhibiting MPS due to the mecha-
nism described in this paper. However, considering the on- (A3)

going progress in the field of bio-engineerify,61, it may  \yhere the volume of the infinitesimal element is given by
become possible to prepare such a system. We mention agaHp, |, =&, Dy |dxedx dx . Consequently.
the possibility of long and thin polymers connected to TMV ™ ' ’

rods in an appropriate solvent. The solvent may be a problem . o S
as we have the double requirement that the polymers are atPui (A, @ 0 )== | Doy
their 6 point and that at the same time the TMV rods still act

as hard particles. Still, such a system of entropic rod-coil " J(dk"'dk’)/z

/2 /2
dx dx

-1J2 ~ly/2

copolymers could be directly compared to the simulation X X~ 1 (% - @

studies of Refs[51,52. Additionally, it would be described (At

by Eq.£39), which would then have to be solved for the case + X0 - @y + XD - )]

of My=1 andMg large. In a more general context, it be-

comes increasingly clear that entropy-induced effects play a o a1 .

prominent rolein vivo [62], and it may be that similar :‘|k|k'(dk+dk')|kawk'|JO<§|kq“*’k)

mechanisms as described here prevent demixing tendencies

due to local constraintg61]. On the other hand, the mecha- i (EI o ) }(d rdo)q- @

nism may also be of relevance in thermotropic systems Jo 2 kd - @ Jlo 2 KK 4 e

where the two components of block copolymers also have (A4)

short-range anisotropic repulsions which are usually of dif-

ferent range. In any case, observing entropy-induced miwith the spherical Bessel function of zeroth order given by

crophase separation in monodisperse systems would ceig(x)=sinx/x. In the Onsager limit of very slender rods,

tainly be an interesting experimental challenge. I, I >dy,d while I,/ (di+dy,) stays finite. In our system,

we expect the wave length of the microseparated phase to be
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ing order, which isjo[%(dk+dk,)q-Eok'k,]:l. Then, our final
result for the Mayer function is

rese (0, D D) = = i (A + )| @y D g |

(1 ~ ). (1 a
X JO(Equ 'wk)JO(EIk’q : w;«)-

(A5)

APPENDIX B: EIGENFUNCTIONS OF (}Sk’k,(&»-&)’) FOR
q=0
For q=0, the Fourier transformed Mayer function is

b (@ ) == I (dy + Opo)| @ D &' |

:_Iklkr(dk+ dkr)\'l_(a)'a),)z (Bl)

and is therefore uniaxial, i.e., dependent on a single planar

angley=arcco$w-®’). Therefore we can expand it in terms
of Legendre polynomials,

+1
b (& - w)—‘|k|kf(dk+dkr)2 A —sPj(w- '),
j=0

(B2)

with sj:27rffldx\s“1—x2Pj (x). Then, using the decomposition
in terms of spherical harmonic ;, we can rewrite this as

Brper (@ @) = =1l (D + di)
1
—WSJ'Y“((D . Z)iji((x) . Z),

(B3)

with the asterisk denoting the complex conjugate asdme

unit vector. It is now directly seen that the Legendre polyno-

mials are eigenfunctions qfﬁk,k,(&)-&)’),
f da)’(}sk,k’(&) ' &)’)P](&)' . 2) == Iklk’(dk + dk/)SJPJ((:) ' 2) .

(B4)

APPENDIX C: INHOMOGENEOUS ORDER PARAMETER
ALONG THE POLYMER

It is possible to calculate the bifurcating order within the
polymer. In case of freely jointed chains in the nematic phase

this is trivial as this exactl)c(f) for a segment of typer.

However, in the case of MPS, segments of type A close to

the “joint” with B segments will typically be more affected

by the B part of the polymer than segments of type A far
away from the joint. This inhomogeneous order parameter
within the polymer can be obtained by calculating the ele-

ments of theM-dimensional vectoc, with elementscﬁg) and
me{l,... M} [see Eq.(43)]. Therefore we proceed by de-
fining the matrixF’ (with a prime

where me{l,... M

PHYSICAL REVIEW EO, 031503(2004)

E ka’

T ket

(Cy

merr -

where the average is only performed over the second label
and thereford=/ , is M X 2 dimensional. Then, if the bifur-
cation density for the microseparated phaggsand the cor-
responding eigenvectar,,s has been calculated beforehand
[from Eq.(49)], ¢, can be computed by evaluating

TMmpM

Co=-— — —=~F'GoCrmps (C2)
4(1+M)(1 +MlI?d)
The elements oF’ are given by
_Ti m-1_r; Mp—-m
Fr,nEAA:i<l+2 Lio(gla)] . [io(ala)]™A ),
" Ma 1-jo(qla)
(C3
1 _mL ~Lio(qlg)]Me
F, =— [p)MA M= C4
meA,B MB[lo(q Al 1-jo(qle) (C4
1. iy L~ o(ala)]Ma
’ - | m-Mp 1.—' C5
meB,A MA[JO(q B)] —io(qly) (CH

, 1 2-[jg(qle) ™ ™Ma - [jo(qIB)JM-m>
Frss=—1|1 ,
meB;8 MB( ’ 1-jo(qls)

(CH)

A} when meA and me{M,
+1,... M} whenme B. For each of these elements again
holds that the average of yields the matrixF [see above
Eqgs.(45) and(48)], i.e.,

1 ,
F 7’ :M_ 2 Fmer,r"

T MeT

(C7

In the Gaussian limit, we have to define a continuous “label,”
s=m/M, with m andM going to infinity such thas keeps its

value. Consequentlg e [0,1] andF’ becomes

, 6 APy
' Oa 6

ﬁ ~
—-ex —6[1—5(1+M)] , (C8
Os

H|

Fag(s A)—£<1—exp{—
Rl 0

X g - M
ex 5 [1-s(1+M)],

' 6 Q/%\D
F B)=—|1-exg-—=
pa(Se B) qi< exp{ 5

1+M

M

(C9

—%)], (10
M
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6 2 1+M 1
Fgg(se B):—2<2—6X —%(ST—:)
B 6 M M

L+M ) (C11)
M

2
—expl - q—GB(l -9)

wherese [0,1/(1+I\~/I)] whense A and SE[l/(l"‘M),l]
whense B. Note that in the Gaussian limi’ is simply a

PHYSICAL REVIEW E 70, 031503(2004)

2 X 2 matrix, however, witts dependence. Consequently, un-
like F, F’ is not symmetric. Additionally, also the
M-dimensional eigenvector becomes two dimensional,

c¢'Ose A))

C12
¢'9(seB) (€12

Co(s) =(
Finally, it has to be noted that in the Gaussian limit, first the
product of G, and ¢, has to be taken and only then the
limit can be applied tdGoCpps-
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